Archived posting to the Leica Users Group, 1998/11/26
[Author Prev] [Author Next] [Thread Prev] [Thread Next] [Author Index] [Topic Index] [Home] [Search]Recently a very interesting discussion has been launched about the difference in characteristics between actual and earlier generations of Leica lenses, Some of these differences are undoubtedly real. I have pointed them out frequently and a year ago we had a similar exchange of opinions between Alf (who very regrettedly left us) and myself. Alf valued the characteristics of the older lenses for many reasons. And I would not in the least question his opinion or choice. We have to be very careful around this topic. To like some characteristics is not the same as stating that these characteristics are virtues or to imply that they are desirable in themselves. The discussion now is focused on a perceived change in Leica design philosophy as exemplified by statements from Osterloh and Laney. The core argument seems to revolve around Laney's statemant that "They started from the proposition that the subjects we photograph very rarely consist of grids of black and white lines on flat sheets of cards." The corollary is that one can design lenses to do very well on standard test subjects and lenses that are designed for real life subjects. These latter designs invariably (by design and subject matter) perform poorly on standard test subjects. First of all: this argument is one big fallacy. Every lensdesigner and every lens ever designed is designed for real life subjects. The only exception might be special reproduction lenses where flatness of field is of utmost importance. All lens designers assume in their design that we have in front of the lens an object in three dimensional space. As this object has to be recorded on a flat plane (the emulsion) and because of light rays behaving a bit weird when eased through an optical system of several glass elements, we encounter aberrations. (More about this in my Viewfinder article next issue). These aberrations have to be corrected and balanced. This is the task of the designer and he can do this with more or less creativity and expertise. There do not even exist any design rules or computer programs that are tuned to twodimensional objects as black and white barlines. Furthermore: Zeiss engineer Mr Hanson introduced in 1943!! the notion of contrast (what later became MTF) and its exact correlation between optical quality and human sharpness perception. And Zeiss have always followed that lead. I would not be surprised if the 'defensive line' of Leitz/Leica in the past has a lot to do with the image quality of Zeiss lenses. We have two types of testing equipment. One group that checks for production tolerances and are used in factories to assure prescribed tolerances. The second group is designed to test lenses for their capabilities in recording real life objects. Be it a barline test, an MTG graph or a beautiful girl, each one tries to find out the characteristics of the lens in question for recording 3-D objects. It is BTW remarkable that the Elmarit-M 2.8/28 (fourth generation) has been referred to as the last lens of the great old generation, while it in fact is one of the first of the NEW generation. Perception is a very quirky business. Also the notion that modern Leica lenses move too far in the direction of high resolution and therefore lose many of their former unique characteristics is not substantiated in practice. Yes modern Leica lense have a superb clarity of very fine image detail, a stunning repression of veiling glare and a very high correction of spherical aberration and many lateral chromatic aberrations, all characteristics that give 3-D objects a very faithful rendering in a flat plane. As a fact when comparing real life pictures (not barlines) taken with the old and new Summilux-M 1,4/35 (asph and non-asph) any viewer, not just me commented on the sparkling lifelike representation of the asph version. Let us not try to create false dichotomies where none exists. Specimen of older Leica lens-generations are very good and sometimes surprisingly competent lenses. And one should admire the perseverence and competence of the designers of these lenses. Newer generations incorporate more research and more knowledge about the way an on object in space should be recorded as an image on film. The Noctilux does not perform poorly on any testobject (girls or barlines or MTF graphs). It performs quite good on all test objects. If a tester would note that the Noctilux has less contrast and whatever else he would like to mention than a Summicron he is correct. If he would conclude that it is therefore a bad lens, he only proves his own incompetence. A lens with the specs of a Noctilux cannot ever produce the image quality of the Summicron. No tester can use one yardstick and evaluate all lenses in a onedimensional way. Laney refers to a socalled ' edge spread width criterion' and some Luggers now infer that this a criterion that favours older lenses while asph versions can cope better with normal test targets. Let me be quick and mercifully: this 'edge spread width criterion' does not exist. We have the point spread function, and the linespread function and we have the acutance measurement. What Laney does is copying the contents of a research paper that is just that: a research paper. An "Ansatz" as the Germans would say that never was followed up and went the way many research papers do: they evaporate. Erwin